

GreenMasterMix (2X)

High ROX™ (500nM)

qPCR Mastermix with fluorescence dye and passive reference dye

suited for example for following instruments:

ABi 5700, ABi 7300, 7700, 7900, 7900HT, ABi 7000 PRISM ABi 7700 PRISM, Eppendorf Realplex 4, QuantStudio™, StepOne™, StepOne™ Plus

Art.no. MM10003

Related Products

Art.no.	Description
MM10001	ProbeMasterMix with High ROX™ for real time PCR / qPCR
MM10002	ProbeMasterMix without ROX™ for real time PCR / qPCR
MM10003	GreenMasterMix with High ROX^{TM} for real time PCR / qPCR
MM10004	GreenMasterMix without ROX™ for real time PCR / qPCR

Manual Contents

Subject	Page
Introduction	4
Product Description	4
High Efficiency and Specificity	4
Stability Test	5
Detection Limit	6
Compatibility	6
Reproducibility	6
Quality Control	6
Stability	7
Product Use Limitations	7
Safety Information	8
PCR Protocol	8
Protocol using biomers.net GreenMasterMix	8
Important Notes before getting started	8
Procedure	8

Product	Art.no.	Package size
Premixed Mastermix for real time PCR / qPCR with green dye as fluorescence dye and 500nM ROX™: Mix for 200 x 25µL reaction volume.	MM10003	2 x 1.25mL (200 x 25 μL reactions)
Premixed Mastermix for real time PCR / qPCR with green dye as fluorescence dye and 500nM ROX™: Mix for 1000 x 25uL reaction volume.	MM10003	10 x 1.25mL (1000 x 25μL reactions)

Introduction

Quantitative PCR is an important tool for SNP and gene expression analysis. This GreenMasterMix is ideal for most quantitative experiments/applications. This mastermix has been designed to perform on real time instruments that require high ROX™ as internal reference dye, e.g. the StepOne™ and StepOnePlus™ instrument from Life Technologies.

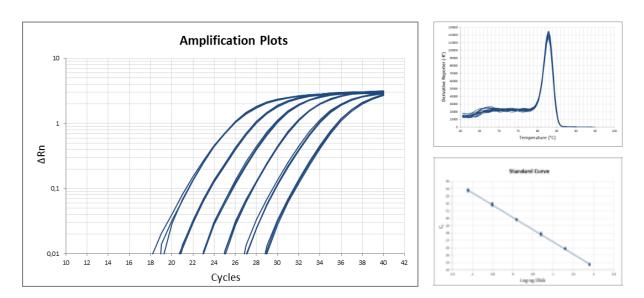
Product Description

The biomers.net GreenMasterMix (2X) is a ready-to-use PCR mixture that contains a chemically modified SuperHotStart *Taq* DNA Polymerase, which improves PCR amplification by decreasing background from non-specific amplification and increasing amplification of the desired product(s). Furthermore SuperHotStart *Taq* DNA Polymerase is inactive at room temperature thus eliminating the necessity of working on ice during experiment set-up. The GreenMasterMix High ROX™ contains special PCR buffer, MgCl₂, dNTPs and a green fluorescent dye plus 500nM ROX™ as passive fluorescence dye, and additives optimised for use in real time PCR with an unspecific fluorescent dye. This 2X mix can successfully amplify and detect a variety of DNA targets such as cDNA, genomic and plasmid DNA with a detection limit down to 6 copies per PCR reaction. The small and convenient aliquot size of 1.25mL ensures and secures safe handling.

Once temperature reaches 95°C, the chemical modification is deactivated, resulting in an active DNA polymerase. This activation step needs at least 10 minutes to be effective. The heat activation step improves sensitivity which improves multiplex PCR, an applied PCR technique that amplifies several specific targets simultaneously. Applications that previously required two or more reactions can be performed in a single reaction tube. Hence, multiplexing represents a substantial saving of time and reagents.

The GreenMasterMix is shipped with additional MgCl₂ solution. The small and convenient aliquot size of 1.25mL ensures and secures safe handling.

High Efficiency and Specificity


To examine the efficiency of the GreenMasterMix High ROX™, a 4-fold dilution series with gDNA was set up for PAH target. Samples were made in triplicates from 80ng gDNA per well, down to 80pg gDNA per well.

The result depicted in figure 1 show high precision and efficiencies close to 100%.

The identical melting curves show a high specificity of the product and the standard curve shows linear detection range and a high accuracy of the biomers.net GreenMasterMix, respective the SuperHotStart *Taq* DNA Polymerase (figure 1).

This product is for research use only.

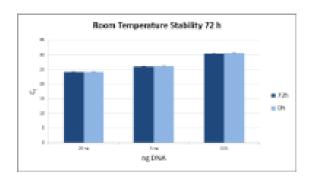


Figure 1: Amplification plot of a 4-fold dilution series for PAH target amplified from human gDNA. Starting amounts of 80ng gDNA, amplified in triplicates using GreenMasterMix (2X) High ROX™.

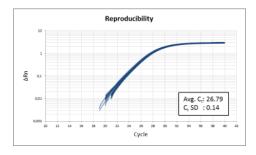
Stability

Due to the stability of our GreenMasterMix High ROX^{TM} and the inactivity of the SuperHotStart Taq DNA Polymerase the mix allows scientists to pre-assemble the qPCR reaction(s), store it, and run it several hours later, when convenient.

A pre-assembled qPCR plate was incubated in darkness at room temperature (20°C − 25°C) for 72 hours and run at the StepOnePlus[™] from Life Technologies together with a newly mixed reaction setup. The results showed similar Ct values with very low standard deviation (figure 2), thus confirming stability of our GreenMasterMix.

Figure 2: A PCR plate was pre-assembled for qPCR reaction and incubated in darkness at room temperature for 72 hours. The result shows high stability and inactivation of the SuperHotStart *Taq* DNA Polymerase before hot start.

Detection limit


Detection limit down to 6 copies was reached with our GreenMasterMix (2X) High ROX™.

Compatibility

GreenMasterMix (2X) High ROX™ is designed for real time instruments that require high ROX™ as internal reference dye, e.g. StepOne™ or StepOnePlus™ from Life Technologies.

Reproducibility

GreenMasterMix (2X) High ROX™ produces reliable and reproducible results. A demonstration of 80 replicates, containing GreenMasterMix (2X) High ROX™ and 20ng gDNA per well, was run on the MX3005P instrument from Agilent Technologies. The results showed close to identical amplification curves and a standard deviation of 0.084 (figure 3).

Figure 3: 80 replicates of the GreenMasterMix (2X) High ROX™ and 20ng gDNA, show a standard deviation of only 0.14.

Quality Control

Amplification efficiency: Amplification efficiency is tested in parallel amplification reactions

and additionally against competitors' products.

PCR reproducibility: PCR reproducibility is tested in parallel amplification reaction.

Exonuclease activity: Linearised DNA is incubated with SuperHotStart *Taq* DNA Polymerase

in PCR buffer E.

Endonuclease activity: Plasmid DNA is incubated with SuperHotStart *Taq* DNA Polymerase in

PCR buffer E.

RNase activity: RNA is incubated with SuperHotStart *Taq* DNA Polymerase in PCR

buffer E.

Protease activity: SuperHotStart *Taq* DNA Polymerase is incubated in storage buffer. **Self-priming activity:** PCR is performed under standard conditions, without primers, using

SuperHotStart Taq DNA Polymerase and human genomic DNA.

Unit definition

One unit of SuperHotStart *Taq* DNA used for the biomers.net GreenMasterMix is defined as the amount of enzyme that incorporates 10nmol of dNTP's into acid-insoluble fraction in 30 minutes at 72°C under standard assay conditions.

Application

- Automated Hot start PCR
- PCR with high specificity (Real time PCR / quantitative PCR)
- Multiplex PCR
- Detection of low target copy number
- 2-step RT-PCR

Features

- All-in-one optimised mastermix, including green dye and ROX™ reference dye
- High sensitivity
- High efficiency and high specificity
- Wide dynamic range
- High reproducibility
- Hot start capacity for room temperature setup

Supplied buffers/solutions

- Magnesium stock solution: 25mM MgCl₂

Stability

The biomers.net GreenMasterMix is shipped on wet ice but retain full activity at RT (15-25°C) for at least 1 week.

The biomers.net GreenMasterMix, including buffers and reagents, should be stored immediately upon receipt at -20°C.

When stored under these conditions and handled correctly, these products can be kept at least until the expiration date (see tube label) without showing any reduction in performance.

All biomers.net real time mastermixes can also be stored unopened at +2 to +8°C up to 10 months without loss of activity.

Product Use Limitations

GreenMasterMix is developed, designed, and sold for research purposes only. It is not to be used for human, diagnostic or drug purposes or to be administered to humans unless expressly cleared for that purpose by the Food and Drug Administration in the USA or the appropriate regulatory authorities in the country of use. All due care and attention should be exercised in the handling of many of the materials described in this manual.

Safety information

When working with chemicals, always wear a suitable lab coat, disposable gloves, and protective goggles. For more information, please consult the appropriate material safety data sheets (MSDSs). These are available online as pdf-file or on request (info@biomers.net).

PCR Protocol Part

Protocol using biomers.net GreenMasterMix (2X)

This protocol serves as a guideline for PCR amplification. Optimal reaction conditions such as incubation times, temperatures, and amount of template DNA may vary and must be determined individually.

Important notes before getting started

- For the highest efficiency in real time PCR using dual labelled probes, targets should be in the range of 90 250bp in length.
- Readjust threshold value for analysis of every run.
- GreenMasterMix provides an optimised concentration of MgCl₂ which will produce satisfactory results in most cases. However, if a higher Mg²⁺ concentration is required, the biomers.net GreenMasterMix is shipped with additional 25mM MgCl₂.
- Set up all reaction mixtures in an area separate from that used for DNA preparation or PCR product analysis.
- Use disposable tips containing hydrophobic filters to minimise cross-contamination.

Procedure

1. Thaw primer solutions

Keep on ice after complete thawing, and mix well before use.

Optional: Prepare a primer mix of an appropriate concentration using sterile, bidest water. This is recommended if several amplification reactions using the same primer pair are to be performed. The final volume of diluted primer mix plus the template DNA, added at step 4, should not exceed $12.5\mu L$ per reaction.

2. Thaw GreenMasterMix (2X) at RT or on ice.

Keep the solutions on ice after complete thawing. It is very important to mix the GreenMasterMix well before use to avoid local differences in salt concentration. The biomers.net GreenMasterMix is provided as a 2X concentrated (i.e. a $12.5\mu L$ volume of GreenMasterMix is required for PCR reactions with a final volume of $25\mu L$). For volumes smaller than $50\mu L$, the 1:1 ratio of GreenMasterMix to diluted primer mix, template DNA and water should be maintained. A negative control (PCR without template DNA) should be included in every experiment. It is recommended that the PCR tubes are kept on ice until they are placed in the thermal cycler.

3. Distribute the appropriate volume of diluted primer mix into the PCR tubes containing the GreenMasterMix.

4. Add template DNA to the individual PCR tubes.

For RT-PCR, add an aliquot from the reverse transcriptase reaction. The volume added should not exceed 10% of final PCR volume.

Table 1: PCR reaction components using GreenMasterMix (2X) (25µL PCR reaction)

Components	Quantities	Final concentration	
GreenMasterMix	12.5μL	1X	
primer 1 (10μM) primer 2 (10μM)	0.5μL (0.25 – 2.5μL)* 0.5μL (0.25 – 2.5μL)*	0.1μM (0.05 – 0.5μM)** 0.1μM (0.05 – 0.5μM)**	
Template DNA	x μL (variable volume)	genomic DNA: 20ng (1 – 100ng)** plasmid DNA: 0.5ng (0.1 – 1ng)** bacterial DNA: 5ng (1 – 10ng)**	
sterile, bidestilled water	up to 25μL		

^{*} Suggested starting conditions (Optimisation of primer concentration is highly recommended)

- 5. **Gently mix** without creating bubbles (do not vortex). Bubbles interfere with detection of fluorescence.
- 6. When using a thermal cycler with a heated lid, do not use mineral oil. Proceed directly to step 7. Otherwise, overlay with approximately 50μ L mineral oil.
- 7. **Program the thermal cycler** according to the manufacturer's instructions.

 A typical PCR cycling program is outlined in Table 2. For maximum yield and specificity, temperatures and cycling times should be optimised for each new target or primer pair.
- 8. Place PCR tubes in the thermal cycler and start program.

Table 2: Final MgCl₂ concentration in a 25μL reaction

Additional MgCl ₂ conc. in reaction (mM)	0	0.5	1.0	1.5	2.0	2.5	3.0
Additional volume of 25mM MgCl $_2$ per 25 μ L reaction (μ L)	0	0.5	1.0	1.5	2.0	2.5	3.0

Note: The optimal Mg²⁺ concentration should be determined empirically but in most cases the optimised MgCl₂ concentration, as provided with the GreenMasterMix will produce satisfactory results.

^{**} Theoretically used conditions in brackets.

Table 3: PCR conditions – Three step Program (Thermal cycler)

Step	time	temperature	comments
Initial denaturation:	15 min.	95°C	
3-step cycling			
Denaturation:	15 - 30 sec. *	95°C	
Annealing:	15 – 30 sec. *	55°C – 65°C	Approximately 5°C below Tm of primers.
Extension:	15 – 30 sec. *	72°C	
	25 25		
Number of Cycles	25 – 35		
Final extension	2 min.	72°C	

Note: After amplification, samples can be stored at +2°C to +8°C overnight, or -20°C for long term storage. **Note:** Denaturation and Annealing/Extention times can vary between thermocyclers and qPCR mastermixes!

Table 4: PCR conditions – Two step Program (**Thermal cycler**)

Step	time	temperature	comments
Initial denaturation:	15 min.	95°C	
2-step cycling			
Denaturation:	15 - 30 sec. *	95°C	
Annealing:	30 – 60 sec. *	55°C - 65°C	Approximately 5°C below Tm of primers.
Number of Cycles	25 – 35		
Final extension	2 min.	72°C	

Note: After amplification, samples can be stored at +2°C to +8°C overnight, or -20°C for long term storage. **Note:** Denaturation and Annealing/Extention times can vary between thermocyclers and qPCR mastermixes!

This biomers.net GreenMasterMix High ROX™ is designed for example for the following instruments:

ABi 5700, ABi 7300, 7700, 7900, 7900HT, ABi 7000 PRISM ABi 7700 PRISM, Eppendorf plex 4, QuantStudio™, StepOne™, StepOne™ Plus

Table 5: Recommendations for Standard PCR Primers

Length: 18-30

nucleotides

GC-Content: 40-60%

Tm: Design primer pairs with similar Tm values.

Optimal annealing temperature may be above OR below the estimated Tm. As a starting point, use an annealing temperature of 3°C to 5°C below Tm of the

primer with the lower Tm-Value.

Sequence: Avoid complementarities of two or more bases at the 3' ends of primer pairs.

Avoid runs of 3 or more Gs or Cs at the 3' end.

Avoid a 3'-end T.

Avoid complementary sequences within primer and between primer pairs.

Table 6: Migration Chart of some Gel Tracking Dyes

Dye in agarose gel	0.5%-1.5%	2.0%-3.0%
Xylene cyanol	10000bp - 4000bp	750bp – 200bp
Cresol Red	2000bp – 1000bp	200bp – 125bp
Bromophenol blue	500bp – 400bp	150bp – 50bp
Orange G	<100bp	<20bp
Tartrazine	<20bp	<20bp

Customer Service

You have questions or suggestions? Contact us! We will be glad to assist you!

info@biomers.net | +49 731 70 396 0